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ic stem cells (ESCs) derived from the early blastocyst can differentiate in vitro
into a variety of somatic cell types including lineages from all three embryonic germ layers. Protocols for ES
cell neural differentiation typically involve induction by retinoic acid (RA), or by exposure to growth factors
or medium conditioned by other cell types. A serum-free differentiation (SFD) medium completely lacking
exogenous retinoids was devised that allows for efficient conversion of aggregated mouse ESCs into neural
precursors and immature neurons. Neural cells produced in this medium express neuronal ion channels,
establish polarity, and form functional excitatory and inhibitory synapses. Brief exposure to RA during the
period of cell aggregation speeds neuronal maturation and suppresses cell proliferation. Differentiation
without RA yields neurons and neural progenitors with apparent telencephalic identity, whereas cells
differentiated with exposure to RA express markers of hindbrain and spinal cord. Transcriptional profiling
indicates a substantial representation of transit amplifying neuroblasts in SFD cultures not exposed to RA.

© 2009 Elsevier Inc. All rights reserved.
Introduction

In vitro differentiation of embryonic stem cells (ESCs) has attracted
wide interest as an experimental system for investigating develop-
mental pathways andmechanisms. In addition, the isolation of human
ESCs (Thomson et al., 1998) and human induced pluripotent stem cells
(Takahashi et al., 2007; Park et al., 2008) has raised the possibility that
in vitro differentiation may provide a novel source of cells for tissue
replacement or repair (Murry and Keller, 2008). Therapeutic use of
ESCs will require robust and reliable methods for producing specific
neural cell types. Early work on mouse ESC in vitro differentiationwas
performed in serum-supplemented medium (Doetschman et al.,
1985). These experiments found that aggregation of cells into
embryoid bodies, combined with exposure to retinoic acid (RA),
enhanced the efficiency of ESC conversion to a neural phenotype (Bain
et al., 1995; Fraichard et al., 1995; Strübing et al., 1995). Aggregation
alone in the presence of serum favours differentiation into non-neural
cell types including cardiac cells (Bain et al., 1996), whereas addition
of 0.5 to 1 μM RA suppresses non-neural differentiation and instead
results in a high proportion of cells becoming neurons or astrocytes
(Bain et al., 1995). Neurons produced in this way acquire axonal and
dendritic polarity, form functional synapses, and include a mixture of
excitatory cells that release glutamate as their transmitter and
.
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inhibitory cells that use either GABA or glycine (Strübing et al.,
1995; Finley et al., 1996).

Because serum contains a large number of factors that might
influence the differentiation process, a number of groups have
investigated the in vitro conversion of ESCs into neurons, or neural
precursors, under serum-free growth conditions (Okabe et al., 1996;
Wiles and Johansson, 1999; Finley et al., 1999; Tropepe et al., 2001;
Ying et al., 2003; Watanabe et al., 2005; Bouhon et al., 2005). In
addition, modifications to the original differentiation procedures have
been devised with the goal of enhancing production of specific neural
phenotypes including dopaminergic neurons (Kawasaki et al., 2000;
Lee et al., 2000), motorneurons (Wichterle et al., 2002), cerebellar
neurons (Salero and Hatten, 2007) and oligodendrocytes (Brüstle et
al., 1999; Liu et al., 2000). Many of these studies have used media or
media supplements with proprietary composition, or they employed
serum or cell-conditioned media (Kawasaki et al., 2000; Barberi et al.,
2003), which makes it difficult to evaluate the specific requirements
for efficient ESC growth and/or differentiation (Cai and Grabel, 2007).
Moreover, it is generally recognized that a more comprehensive
comparison of the differentiated cell phenotypes produced by these
different in vitro induction procedures is desirable (Glaser and Brüstle,
2005).

A goal of our work has been to simplify the protocol required for in
vitro neural induction while preserving cell survival and eliminating
exposure to exogenous retinoids. Here we describe a serum-free,
retinoid-free, growth medium supporting robust neural differentia-
tion with insulin, transferrin and BSA as the only exogenous protein
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constituents. Neurons derived in this medium exhibit many char-
acteristics of those induced by retinoic acid, but transcriptional
profiling revealed substantial differences in gene expression between
retinoid-free versus retinoid-exposed cell populations that was
confirmed by electrophysiology and immunofluorescence.

Methods

ES cell culture

Murine ESCs were propagated independent of feeder cells in
25 cm2 tissue culture flasks that had been coated with gelatin (0.1%
from bovine skin in sterile water; Sigma). The D3 and CE3 ESC lines
were obtained from Dr. David Gottlieb (Adams et al., 2003); the B5
line was obtained from Dr. Andras Nagy (Hadjantonakis et al., 1998).
The growth medium for dividing ESCs was Dulbecco's Modified Eagle
Medium (DMEM; Life Technologies), which was supplemented with
20% calf serum, nucleosides (30 μM adenosine, cytodine, uridine,
guanidine and 10 μM thymidine; Sigma), leukemia inhibitory factor
(LIF, 1000 U ml−1 ESGRO, murine; Life Technologies) and 2-
mercaptoethanol (0.1 mM; Sigma). When cells reached 80 to 90%
confluence the medium was removed, the flask was rinsed with
divalent-free Earl's balanced salt solution (EBS; Life Technologies),
and incubated for 1 min with protease XXIII (1 mg ml−1; Sigma) in
divalent-free EBS. Detached cells were triturated gently, collected by
centrifugation (70 ×g for 5 min), and then resuspended in 4 ml of
complete growth medium. A 1:4 dilution of this cell suspension was
used to seed a new flask. All cultures were kept at 37 °C in a 5% CO2

humidified air incubator.

Neural differentiation

To initiate neural differentiation, ESCswere passaged from the flask
with protease XXIII in divalent-free EBS and collected by centrifuga-
tion. Cells were resuspended in serum-free differentiation medium
(Supplementary Table 1) supplemented with nucleosides (see above)
and with 4 mM glutamine, and seeded at a density of 1.5 to 2×106 per
5 ml in 5 cm non-adhesive bacteriological Petri plates that had been
coated with 0.15% agarose (Sigma, Type II-A). Under these conditions,
cells remained suspended and formed aggregates that increased in size
to form embryoid bodies. Every 2 d the aggregates were providedwith
fresh medium as follows. Medium and aggregates were transferred
from the Petri dish to a 5 ml round-bottomed tube using a transfer
pipette. Fresh medium was added to the empty Petri dish while the
aggregates were allowed to settle in the tube for 5–10 min at room
temp. Old medium was removed from the tube. The aggregates were
resuspended with fresh medium from the Petri dish, transferred back
into the Petri dish and returned to the incubator. For some experiments
500 nM all-trans RA (Sigma) was added to the medium from d4–8.
After 10–12 d, aggregateswere dissociated into a single cell suspension
and plated onto 35mmplastic tissue culture dishes or glass cover slips
that were coated with a mixture of poly-DL-ornithine (200 μg ml−1;
Sigma) and mouse laminin (3 μg ml−1; Gibco). Aggregates were
collected in a 5 ml round bottomed tube and incubated for 5 min at
room temperature in divalent-free EBS containing proteaseXXIII (1mg
ml−1). Aggregates were rinsed 2 times with EBS containing 0.1% BSA
(Sigma) and 0.1% ovomucoid (Sigma), and then once with SFD
medium (Supplementary Table 1). Aggregates were triturated with a
fire-polished Pasteur pipette in a total volume of 1–2 ml of SFD
medium. Approximately 2–3 fold more cells were obtained from
aggregates maintained in SFD medium alone for 12 d than from
cultures that were exposed to RA (see Results). For plating, cells were
suspended in SFD medium at a density of 3 to 6×105 cells ml−1 and
dispensed onto coated dishes or cover slips. Cells differentiated in SFD
medium alone were plated at lower density (∼150 cells mm−2) than
RA-treated cells (300 cells ml−2) to compensate for differences in
proliferation rate (see Results). Cells were allowed to settle and attach
for 1 h, then gently rinsed once with SFDmedium before adding 0.5 to
1 ml of SFDmedium supplemented with 0.25 mM glutamine. Cultures
were fed every 2 to 3 d by partial medium replacement. For some
experiments, division of non-neuronal cells was inhibited by addition
of cytosine arabinoside (10 μM; Sigma) several days after plating. All
inductions were performed within 10 passages of thawing from low
passage number frozen stocks.

Electrophysiology

Recordings from cells with neuronal morphology were performed
as described previously (Bain et al., 1995; Finley et al., 1996). Briefly,
cultures were perfused at a rate of 1–2ml/minwith Tyrode's solution:
150 mM NaCl, 4 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM glucose,
and 10 mM HEPES, adjusted to pH 7.4 with NaOH. Pipettes for whole
cell recording were pulled from boralex glass capillaries. The internal
solution used to record Na and K currents contained 140mMKCH3SO3,
or 140 mM K-glucuronate, 10 mM NaCl, 5 mM MgCl2, 200 μM EGTA
and 10 mM HEPES, adjusted to pH 7.4 with KOH. For recording
agonist-evoked currents, pipettes were filled with 140 mM Cs-
glucuronate, 10 mM EGTA, 1 mM ATP (Mg salt), 0.3 mM GTP (tris
salt), and 10 mM HEPES, adjusted to pH 7.4 with CsOH. The open tip
resistance ranged from 1 to 5 MΩ. Drug solutions were applied to the
cells using an array of microcapillary tubes. The time constant for
exchange of the external solution was 30–50 ms. Excitatory and
inhibitory agonists were dissolved in 160 mM NaCl, 2 mM CaCl2,
0.5 μM tetrodotoxin (TTX, Sigma) and 10 mM HEPES, adjusted to pH
7.4 with NaOH.

Current was recorded with an Axopatch 200A amplifier (Axon
Instruments), filtered at 1 to 5 kHz (−3 db, 4 pole Bessel), and
digitized at 10 to 20 kHz. Current traces were corrected for leak and
capacity using scaled current evoked by an 8 to 10mV hyperpolarizing
step from the holding potential. Membrane potentials were corrected
for the junction potential between the internal solution and the
Tyrode's solution in which seals were formed. This potential was
−10mV for pipettes containing Cs-glucuronate. All experiments were
performed at room temperature.

Immunofluorescence

ESC aggregates or monolayer cultures of differentiated cells were
rinsed with Tyrode's solution and incubated for 15–20 min at room
temperature in 0.1 M Na Phosphate, pH 7.4, containing 4% paraf-
ormaldehyde and for some experiments 0.1% glutaraldehyde. After
three rinses with Tris-buffered saline, pH 7.4, aggregates were
equilibrated with 30% sucrose, collected in an inverted pyramidal
mold (Polysciences) and frozen on dry ice. Aggregates frozen in
sucrose were bonded to the chuck with O.C.T. compound (Tissue-Tek),
cryosectioned (6 μm) and mounted on Snowcoat X-tra slides
(Surgipath). Mounted sections and fixed, rinsed monolayer cultures
were incubated for 30 min at room temperature with blocking
solution (BS): PBS containing 1% normal goat serum, 0.02% sodium
azide, and 0.1% Triton X-100; and then incubated overnight at 4 °C (or
in some cases for 2 h at room temperature) with primary antibodies
diluted in BS. Sampleswere rinsed three timeswith PBS and incubated
for 1 h at room temperature with fluorescent conjugated secondary
antibodies diluted in BS. They were then rinsed three times with PBS
and examined under epi-illumination with appropriate filters.
Primary and secondary antibodies and dilutions are reported in
Supplementary Table 2. Images were acquired with a Nikon Eclipse
E600microscopewith 10×, 40× and 60× objectives (0.3, 0.8 and 1.0 N.
A., respectively). Image analysis and quantification was performed
with MetaMorph software (Universal Imaging). Most figure panels
show sections that did not exceed the field of view of the camera
(Photometrics CoolSNAP ES).



458 M. Kim et al. / Developmental Biology 328 (2009) 456–471
RT-PCR

Total RNA was isolated from differentiated ESC cultures using the
RNeasy kit (Qiagen) and quantified by optical density. Reverse
transcription and PCR were performed according to the manufac-
turer's protocol using the OneStep RT-PCR Kit (Qiagen) and 50 ng of
RNA. In brief, reverse transcription for 30 min at 50 °C was
immediately followed by PCR activation at 95 °C for 15 min, then
30 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for
1 min and extension at 72 °C for 1 min. Final extensionwas at 72 °C for
10 min. The following primers were used:

glycine receptor (GlyR)
GlyR α1 forward: 5′-TGTACATCCCCAGCCTGCTCATCGTCATC-3′
reverse: 5′-GAGGCGGGTTAGTGGTGTTGTTGTTGTTGG-3′
GlyR α2 forward: 5′-CACCTTGCCCCAGTTTATTTTGAA-3′
reverse: 5′-GATGCCCTGGAACCTGAACTCTGTGTAG-3′
GlyR α3 forward: 5′-CTTTCGGACACTAGTTTCTGGATTTTAC-3′
reverse: 5′-AGTTAGCCCCCTTCTCATTAGCA-3′
GlyR α4 forward: 5′-AGGGGCCAACTTCCATGAGGTGAC-3′
reverse: 5′-CAAGGCAGCAAATACAAAGAGCAGGCATACAGC-3′
GlyR β forward: 5′-CTCATTGCCTGCCTGCTCTTCGGGTTTG-3′
reverse: 5′-GATGCGCTTGGCTGCTGTTGGGATGA-3′
GAPDH forward: 5′-GAGGCCGGTGCTGAGTATGTC-3′
reverse: 5′-TCCACCACCCTGTTGCTGTAG-3′.

Microarray analysis

Total RNA was isolated using Trizol reagent (Life Technologies)
from replicate cultures of undifferentiated ESCs and from cells
aggregated in suspension 12 d in SFD medium, with or without
exposure to RA (d4–d8), then dissociated and maintained 6 d in
plated cultures. RNA from each sample was used to generate
biotinylated-fragmented cRNA probes using a Bioarray High Yield
RNA transcript labelling kit (Enzo Biochem, New York). Hybridized
Affymetrix gene chips (MOE430v2), which represent approximately
39,000 transcripts, were washed and stained according to the
manufacturer's protocols, then scanned in the Affymetrix GeneChip
array scanner by the Siteman Cancer Center Multiplexed Gene
Analysis Core at Washington University Medical School. Array
images were analyzed using Affymetrix Microarray Suite version
5.0. Gene expression values were normalized to the median
intensity array before model-based analysis using dChip software
(Li and Wong, 2001). Using undifferentiated ESCs as a baseline,
genes were identified as enriched in differentiated cells if they
satisfied both of the following criteria: 1) a ∼2-fold increase in
mean normalized intensity level (1.2 fold 90% lower confidence
bound, see Li and Wong (2001), Ramalho-Santos et al. (2002)) and
2) an absolute difference in mean normalized intensity level N100.
This second criterion sets a baseline for expression in the
differentiated population to screens out genes with very low
expression in both undifferentiated and differentiated populations.
Genes identified as common among all three populations had
mean normalized intensity values N100 and were identified as
“present” by MAS 5.0 in at least one of the replicate samples from
each population. Gene Function Enrichment analysis was per-
formed in dChip. Hierarchical clustering based on population Gene
Ontology term representation was performed with GOurmet soft-
ware (Doherty et al., 2006, 2008).

BrdU labelling

For cell proliferation analysis, bromodeoxyuridine (BrdU, Sigma)
was added to aggregates at 10 μg ml−1 every 4 h for 24 h. Aggregates
were harvested at 0 h, 1 h, 2 h, 4 h, 6 h, 8 h and 24 h after BrdU
treatment, and fixed for 20–30 min at room temperature with 4%
paraformaldehyde in 0.12 M sodium phosphate, pH 7.0. Aggregates
were cryosectioned, post-fixed in 4% paraformaldehyde in 0.12 M
sodium phosphate, pH 7.0, and treatedwith 2N HCl for 10min at 37 °C.
For cultured cells, BrdU was applied for 2 h prior to fixation with 4%
paraformaldehyde in 0.1 M sodium phosphate, pH 7.0, for 10–15 min.
Immediately before staining, cultured cells were post-fixed for 15 min
at room temperature with 4% paraformaldehyde in 0.12 M sodium
phosphate, pH 7.0, then treated with 2N HCl for 30 min at 37 °C.
Cultures and slide-mounted sections were neutralized by room
temperature incubation for 20 min in borax solution: 55% 0.2 M
boric acid+45% 0.05 M borax. After 3 washes with PBS, samples were
blocked with PBS containing 1% goat serum and 0.1% Triton X-100 for
30 min, then incubated for 1–2 h at room temperature with mouse
anti-BrdU (1:400, Boehringer Mannheim). Goat anti-mouse Cy3-
conjugated secondary antibodies were used to detect BrdU-positive
cells. Cell nuclei were counterstained with Hoechst33342 (2.5 μM).
Counts were performed to quantify the number of cells that
incorporated BrdU as a percentage of Hoechst 33342 stained nuclei
(23–25 aggregate sections or 34 plated culture fields for each time
point).

Statistical analysis

Unless otherwise specified, data are expressed as mean±sem.
Statistical analysis was performedwith SigmaStat (Systat Software) or
with the appropriate functions in Excel (Microsoft). Significance was
assigned for p valuesb0.05.

Results

Neural differentiation

In a previous work (Finley et al., 1999) we demonstrated relatively
efficient neural differentiation when ESC aggregates were maintained
for 8 d in serum-free Neurobasal Medium plus the B27 supplement,
which contains 20 different ingredients including retinyl acetate
(Brewer et al., 1993); however, generation of neurons was dramati-
cally curtailed when complete B27 supplement was replaced with B27
that lacked retinyl acetate (Finley et al., 1999). To investigate the
effects of retinoids on ESC neural differentiation, we developed a
modification of earlier serum-free induction media (Wiles and
Johansson, 1999; Tropepe et al., 2001; Ying et al., 2003) that lacks
exogenous retinoids and avoids the use of proprietary growth
supplements or media formulations (Supplementary Table 1).

To initiate induction, feeder-free ESC monolayers were detached
with protease, rinsed extensively with balanced salt solution,
suspended in serum-free differentiation medium (SFD; Supplemen-
tary Table 1), and dispersed into non-adherent Petri dishes. Under
these conditions the cells formed floating aggregates that gradually
enlarged by cell division. Expression of Oct3/4, which defines the
undifferentiated state (Niwa et al., 2000), progressively declined
(Supplementary Fig. 1), while there was a gradual increase in cells
expressing proteins associated with neurons or neural precursors
including nestin (Lendahl et al., 1990) and β-3-tubulin (Caccamo et al.,
1989) (Supplementary Fig. 1). Cells maintained exclusively in SFD
medium acquired neural properties over a time course of 10–12 d,
whereas addition of 0.5 μM RA from d4–d8 speeded differentiation, as
evidenced by a higher proportion of β-tubulin-expressing cells at
earlier time points. Aggregates maintained in suspension for 12 d
were dissociated to single cells and plated onto laminin plus poly-DL-
ornithine coated tissue culture plastic in SFD medium with reduced
glutamine to avoid conversion to excitotoxic glutamate (Newcomb et
al., 1997). Immunofluorescent staining 3–6 d after plating revealed a
high proportion of β-3-tubulin positive neurons, as well as glial
fibrillary acidic protein (GFAP) positive astrocytes, in cultures induced
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with SFD medium alone, or with addition of RA during d4–d8 as
aggregates (Figs. 1A–E).

Polarity

Mature neurons exhibit distinct axonal and somatodendritic
compartments; the degree of polarity increases with neuronal
maturation (Caceres et al., 1986; Dotti et al., 1988). We visualized
the axonal marker growth associated protein 43 (GAP43) and the
somatodendritic marker microtubule-associated protein 2 (MAP2) at
several time points after plating. On d1 in culture, both GAP43 and
MAP2 were observed within the same neurites of cells induced with
or without exposure to RA (Figs. 1F, I, L). Segregation into separate
axonal and dendritic compartments was well advanced by d3 after
plating in cells induced with RA (Figs. 1J, L). In cells induced without
RA, however, colocalization of axonal and dendritic markers declined
more gradually, remaining higher than for RA treated cells at d6 after
plating (Figs. 1H, L). Full segregation of GAP43 and MAP2 required 7–
10 d in cultures differentiated without RA (Supplementary Fig. 2).
Fig. 1. Neural differentiation with and without retinoic acid. Immunofluorescence for β-3
counterstaining (blue) in plated cultures differentiated in SFD mediumwithout RA (A, C) or
percent of Hoechst stained cell nuclei (mean±sem) within the first 3 d or d4–d6 after pla
without RA (F, G, H) or with RA (I, J, K), fixed 1 d (F, I), 3 d (G, J), or 6 d (H, K) after plating. Sca
treated inductions (solid bars) included a higher proportion of β-3-tubulin-positive neurons
than cells differentiated in SFD medium alone (open bars). ⁎pb0.01; #pb0.05.
Thus, cells exposed to RA establish polarity more rapidly than cells
induced in SFD medium alone, consistent with the idea that neurons
induced with RA are more mature, or mature more rapidly, than those
which differentiate without RA.

Transmitter phenotype

To evaluate neurotransmitter phenotypes we used immunofluor-
escence with antibodies to the inhibitory neurotransmitter γ-
aminobutyric acid (GABA) and to the GABA synthetic enzyme,
glutamic acid decarboxylase (GAD), asmarkers for GABAergic neurons
(Chang and Gottlieb, 1988). Cells induced without RA generated a
higher proportion of cells that were double-labelled for β-3-tubulin
and either GABA (37.2±2.6%, n=27) or GAD (42.8±2.7%, n=30)
than cells induced with RA (24.4±1.5%, n=22) and (22.6±1.2%,
n=30), respectively (Figs. 2A–D, G). Essentially all GAD or GABA
positive cells were also positive for β-3-tubulin regardless of RA
exposure. Double immunofluorescence with anti-GAD and anti-GABA
demonstrated co-staining in the majority of cells, although the anti-
-tubulin (green) (A, B) and GFAP (red) (C, D), together with Hoechst 33342 nuclear
with RA (B, D). Scale bars: 25 μm. (E) Plots of β-3-tubulin immunofluorescent cells as a
ting. Double immunofluorescence for GAP43 (red) and MAP2 (green) in cells induced
le bar: 25 μm. (L) Percent GAP43/MAP2 colocalization (mean±sem). Cultures from RA-
and established a polarized distribution of axonal and somatodendritic markers earlier



Fig. 2. Transmitter phenotypes and electrophysiological properties. Double immunofluorescence for β-3-tubulin (green) and either glutamic acid decarboxylase (GAD; A, B) or GABA
(red) (C, D) in cells induced without RA (A, C), or with RA (B, D). Double immunofluorescence for β-3-tubulin (green) and vesicular glutamate transporter 1 (VGLUT1) (red), a
marker for glutamatergic neurons, in cells induced without (E) or with RA (F). A higher proportion of cells induced with RAwas glutamatergic (arrows). Scale bar: 25 μm. (G) Percent
of β-3-tubulin-positive neurons co-labelled with anti-GABA or anti-GAD in cells induced with SFD medium alone (open bars) or with exposure to RA (solid bars). Cells induced
without RA generated a higher proportion of GABAergic neurons than cells induced with RA. ⁎pb0.01. (H) Whole-cell currents evoked by a voltage step from−80 to 0 mV. (I) Peak
inward sodium and outward potassium current densities in neurons differentiated in SFD medium alone (open bars) or with RA (solid bars). (J) Whole-cell currents evoked by
100 μM kainate, GABA, glycine and by 40 μMNMDA in cells induced without (top) or with (bottom) RA. (K) Plots of agonist-evoked current density. All four agonists evoked current
in neurons derived from ESCs exposed to RA; however, neurons generated in SFD medium alone failed to express functional glycine receptors. (L) Spontaneous inhibitory synaptic
currents recorded at 0mV and excitatory synaptic currents recorded at−80mV in neurons differentiated in SFDmedium alone. (M) Reverse transcription-polymerase chain reaction
(RT-PCR) analysis of the expression of glycine receptor subunits, α1,α2,α3, α4, and β in cells induced without RA or with RA. S: cells induced in SFDmedium alone; R: cells induced
in SFD medium with RA from d4–d8 in suspension. Glyceraldehyde-3-phosphate dehydrogenase (lane G) was used as a control. Cells induced with RA expressed all of the glycine
receptor subunits except α4, whereas only the β subunit and α2 embryonic subunit were detected in cells induced without RA exposure.
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GAD signal was indistinguishable from background in a small
percentage of GABA-positive cells (Supplementary Fig. 3). Consistent
with the lower proportion of GAD- and GABA-positive neurons,
immunofluorescence for the vesicular glutamate transporter 1
(VGLUT1), a marker for excitatory glutamatergic neurons (Bellochio
et al., 2000; Takamori et al., 2000), was more prevalent in cultures
from RA-treated aggregates (Figs. 2E, F, arrows). Because anti-vGLUT1
only weakly labels the cell soma, however, we did not undertake to
quantify the proportions of positive cells.

Electrophysiology

Whole-cell patch clamp recordings were used to compare the
physiological characteristics of neurons induced without or with
exposure to RA. Nearly all cells with neuronal morphology expressed
voltage-gated sodium and potassium currents, when analyzed 7–14 d
after plating (Figs. 2H, I). In addition, currents were evoked in the cells
by brief applications of GABA, acting on GABAA receptors, and by
kainic acid and NMDA, which are agonists for two different glutamate
receptor subtypes (Fig. 2J). Functional synaptic transmission between
neurons generated in SFD medium was detected after ∼3 weeks in
culture (Fig. 2L). Interestingly, the inhibitory neurotransmitter glycine
failed to elicit detectible current in the majority of neurons induced in
SFDmediumwithout exposure to RA (Figs. 2J, K). By contrast, neurons
exposed to RA during induction in SFD medium expressed functional
glycine receptors, as previously described for differentiation with
serum (Bain et al., 1995).

The difference in glycine-evoked current between cells induced
with RA or without RA led us to examine the expression of glycine
receptor subunits by RT-PCR. Glycine receptors comprise pentameric
subunit complexes that include α and β subunits. Only α subunits
generate functional homo-oligomeric glycine receptors; β subunits do
not form receptors by themselves (Kuhse et al., 1993). Thus far, four α
subunits and one β subunit have been identified. In adult rats the α1
and α3 subunits are highly expressed in the spinal cord and brain
stem, and are also found in the superior and inferior colliculi and in
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some regions of the thalamus and hypothalamus (Malosio et al., 1991).
The α2 subunit is expressed throughout most of the embryonic CNS
including cortex, thalamus and hippocampus (Akagi et al., 1991), but
declines sharply after birth with more restricted expression in adults,
notably in the retina, and in auditory brain stem nuclei (Piechotta et
al., 2001). The α4 subunit is a component of embryonic glycine
receptors in the spinal cord, sympathetic ganglia and dorsal root
ganglia (Harvey et al., 2000). Cells induced with RA expressed all of
the subunits except α4, whereas cells induced without RA expressed
only small amounts of α2 and the β subunits (Fig. 2M). These results
are consistent with our electrophysiological recordings. Together they
suggest that cells induced without RA may be physiologically less
mature than cells induced with RA, or may correspond to cell types
that do not express functional glycine receptors in vivo.

Transcriptional profiles

To gain a broader perspective on phenotypic differentiation we
used microarray analysis to test for genome-wide transcriptional
differences between cells induced with SFD medium alone or with
exposure to RA from d4–d8 in suspension (Fig. 3A). For comparison,
we also isolated RNA from replicate plates of undifferentiated ESCs.
Probes were hybridized to Affymetrix Mouse genome arrays
(MOE430v2). Array scans were analyzed with Affymetrix MAS 5.0
software and dChip, amodel-based program for pooling and statistical
comparison across multiple chip data sets (Li and Wong, 2001).

A common pool of 2496 genes was elevated in cells differentiated
with SFD medium alone and in cells that were exposed to RA,
including many encoding for known neuronal proteins (Figs. 3B, C;
Supplementary Data File #1). In addition, 557 genes were enriched
only in cells that underwent differentiation in SFD medium without
RA, whereas 1202 genes were enriched only in cultures from
inductions that had been exposed to RA. Fig. 3C presents the 50
genes most enriched in the undifferentiated (ES) or the differentiated
(SFD, RA) cell populations, sorted from highest to lowest fold
enrichment (lower bound). Based on a recent transcriptome analysis
of neurons, astrocytes and oligodendrocytes (Cahoy et al., 2008) many
of the genes enriched in our differentiated cell populations (SFD, RA)
are specific for particular neural cell types. A high proportion of genes
enriched in astrocytes is specifically up regulated in cells differ-
entiated with SFD medium alone, whereas many neuron-specific
genes are selectively up regulated in cells that received brief exposure
to RA (Fig. 3C).

Genes enriched both in ESCs and in cultures differentiated with
SFD medium alone (449) included many associated with cell
division, such as cyclin A2 and D1, geminin, and wee 1. By contrast,
only a few genes were enriched in common in both undifferentiated
ESCs and in cultures differentiated with RA (107). The 5320 genes
common among all three cell populations included many “house-
keeping” proteins such as clathrin, β and γ actin, Na+/K+ ATPase
subunits and 27 different ribosomal proteins; however, comparison
with our other enrichment profiles revealed that many of the genes
identified as specifically enriched in one or two out of the three cell
populations were also included. Thus, a substantial number of these
genes may be expressed within all three populations, but show
significant up-regulation in one or two out of the three. The Venn
diagram in Fig. 3B lists the number of genes enriched in each
category but also shows the percentage that is unique to that
category. For example, of the 557 genes enriched in cultures
differentiated in SFD medium alone, 38.6% were only represented
in that category while the remaining 61.4% met the criteria for
inclusion in the central pool of 5320 genes expressed to some extent
in all three populations. Complete lists of all genes in each category
are provided in the Gene Table Supplementary Data File.

Consistent with our evidence for the relative immaturity of
cultures induced with SFD medium alone, the genes enriched in this
population included many associated with early neural precursors,
such as neurogenin1, neurod1, Dlx1, Pax6 and Eomes. In contrast, the
list of genes specific to inductions that involved exposure to RA
included components of mature neurons, such as synaptic molecules,
receptors, channels and neurotransmitters. To visualize these differ-
ences in functionality we used Gene Ontology (GO) terms (Ashburner
et al., 2000). Fig. 4A highlights GO terms with significant prevalence
among genes specifically enriched in SFD medium alone (green), in
RA-treated cells (red), or genes enriched in both differentiated cell
populations (yellow) relative to ESCs. Genes associated with brain
development, neural differentiation, chromatin modification andWnt
receptor signalling were enriched in the cultures differentiated with
SFD medium alone, whereas cultures from inductions that had been
exposed to RA exhibited a higher proportion of genes associated with
mature neurons (ion transport, pre- and post-synaptic membrane,
neurotransmitter secretion) (Fig. 4A; Supplementary Tables 3–5).

Profile comparison

To compare our transcriptional profiles quantitatively with pre-
vious expression profiling studies we used GOurmet software which
allows for platform-independent analysis based on GO terms
(Doherty et al., 2006, 2008). Hierarchical clustering revealed that
genes specifically enriched in RA-treated cells (RA) cluster with
profiles of mature brain tissue (Supplementary Fig. 4) whereas genes
specifically enriched in SFD medium alone exhibit the greatest
similarity to the profile of E14.5 retinal neuroblasts (Fortunel et al.,
2003), a transit-amplifying cell population (Doherty et al., 2008).
Inclusion of profiles from non-neuronal cell types further highlights
the distinction between stem, transit-amplifying and mature expres-
sion patterns. The dendrogram in Fig. 4B illustrates the relationships
among 28 different profiled cell populations including 3 profiles of
neural stem cells (numbers 17, 18 and 19) and 7 other tissue-derived
stem-like populations (numbers 14–16, 20–23), 3 profiles from
transit-amplifying cell populations (numbers 25, 27, 28), and 9
profiles from mature tissues (numbers 3, 6–13; see Supplementary
materials for complete information on each population profile). In
addition to the genes specific to SFD alone and to RA-treated cells, the
dendrogram in Fig. 4B also displays lists that include genes
upregulated in both of the differentiated cell populations (number
5, SFD vs ES; number 4, RA vs ES) relative to undifferentiated ESCs.

To focus on the differences between cells differentiated with and
without RA, we also identified 1366 genes enriched in SFD alone
cultures relative to RA-treated cells (number 26, SFD vs RA). These
genes, which are likely to be expressed by cells present in the cultures
differentiated with SFD alone but absent from RA-treated cultures,
were found to cluster most closely with the transit-amplifying
populations. In contrast, 1883 genes enriched in RA-treated cultures
relative to SFD alone (number 2, RA vs SFD) clustered together with
genes that were specific to RA-treated cells (number 1, RA). Taken
together, our data suggests that cultures differentiated with SFD
medium alone include neurons as well as a substantial representation
of cells that are relatively immature and retain a high proliferative
capacity, typical of transit-amplifying neuroblasts, whereas cultures
induced with a period of exposure to RA are relatively more mature
and appear to retain fewer precursor cells.

Cell proliferation

Neural differentiation, both in vivo and in vitro, requires cells to
exit the cell cycle and become postmitotic (Ohnuma and Harris,
2003). Our microarray analysis revealed higher expression of early
neural progenitor genes in cultures induced in SFD medium without
RA as compared to undifferentiated cells and those induced with
exposure to RA. This led us to evaluate the fraction of proliferating
cells by incubation with bromodeoxyuridine (BrdU) (Gratzner,



Fig. 3. Transcriptional profiles. (A) Mouse ESCs were maintained in suspension for 12 d in serum free differentiation medium alone (SFD), or with exposure to RA from d4–d8 (RA).
mRNA for microarray analysis was prepared from differentiated cells 6 d after plating on laminin plus poly-ornithine, and from feeder-free undifferentiated mouse ESCs (ES)
maintained in DMEM plus serum and LIF. (B) Venn diagram showing shared and distinct genes among undifferentiated ESCs (ES, blue), cells induced without RA (SFD, green) and
cells induced with exposure to RA (RA, red). (C) Genes specifically enriched in ES, in SFD, in both SFD and RA, and in the RA cell populations. Replicate microarray heat plots for the 50
genes with the highest fold enrichment (lower bound) in each population ordered from highest (top) to lowest (bottom). Genes specifically enriched in neurons (green), astrocytes
(yellow), or oligodendrocytes (red) are highlighted. A black dot in the colored box indicates a match with the specific probe set identified by Cahoy et al. (2008) as cell type enriched.
Bar plots illustrate a weighted index of cell type-specific expression for all of the genes in each population.
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1982). ESC aggregates were maintained for 12 d in SFD medium
alone or with addition of RA from d4–d8. Sister cultures received
BrdU for periods ranging from 1 to 24 h immediately prior to
harvesting at the end of the 12 d induction. Cell aggregates induced
with or without RA contained more BrdU positive cells as BrdU
exposure time increased; however, the proportion of labelled cells in
SFD medium alone was consistently higher than in cultures that had
received RA (Figs. 5A–H). After 24 h of BrdU treatment, almost 50%
of cells in EBs induced without RA showed positive BrdU signal,
whereas only 25% of cells in EBs induced with RA were labelled with
BrdU (Fig. 5I). We next compared proliferation on d1–4 after plating
by adding BrdU to plated cultures 2 h prior to fixation. Cultures
induced with SFD medium alone showed a high proportion of BrdU
positive cells (∼41%) on d1, and lower proportions on subsequent
days. However, cells induced with RA showed much lower BrdU
labelling (∼5–8%) at all time points (Figs. 5J–L). Collectively, our
results suggest that SFD medium alone supports a higher level of
continued neural precursor proliferation, whereas exposure to RA
promotes exit from the cell cycle and speeds neuronal differentia-
tion and maturation.



Fig. 4. Profile comparison. (A) Fractional representation of gene sets grouped by Gene Ontology terms. Boxes next to each Gene Ontology term indicate significance for genes
specifically enriched in cells induced with SFDmedium alone (green), for genes enriched in cells induced with SFDmedium plus exposure to RA (red), or genes that were enriched in
both populations relative to undifferentiated mES cells (yellow). Note that seven of the Gene Ontology terms (small GTPase-mediated signalling, membrane, vesicle-mediated
transport, golgi-apparatus, protein transport, synapse, and ATP biosynthetic process) displayed significant representation both in the RA (red) and in the SFD and RA (yellow)
categories, albeit each gene was only assigned to one category (see Supplementary Tables 3–5 for quantitation). (B) Hierarchical clustering based on the relative frequency of Gene
Ontology term representation in data sets derived from tissue-derived stem cells, transit amplifying cell types and various differentiated cell populations presented as a dendrogram.
Fractional numbers indicate the degree of dissimilarity, calculated as 1-Pearson's coefficient of similarity, between two profiles at the depicted branch point. Genes specifically
enriched in cells induced with SFD plus RA exposure (RA, 1) cluster with profiles of mature tissues, including hippocampus (3) and cerebellum (6); whereas genes enriched in the
SFD alone cell cultures relative to RA-treated cells (SFD vs RA, 26) clustered most closely with transit-amplifying cell populations (25, 27, 28). Genes specifically enriched in SFD
medium alone (SFD, 24) are intermediate to the transit amplifying and tissue-derived stem cell populations. By contrast, genes enriched in RA-treated cells relative to cells
differentiated without RA (RA vs SFD, 2) clustered together with the genes specific for RA-treated cells (RA, 1) and with genes enriched in SFD alone (SFD vs ES, 5), or in RA-treated
cells (RA vs ES, 4), relative to the undifferentiated ES cells. (C) Segregation of fully differentiated tissues, tissue-specific stem cell populations, and transit amplifying cell types based
on fractional representation of membrane and nucleus GO terms.
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Neural progenitors

Neurons in the developing CNS are generated from at least three
types of progenitor cells, neuroepithelial cells, basal or intermediate
progenitors, and radial glial cells, which express different molecular
markers, (Doetsch 2003; Goldman, 2003). Neuroepithelial cells
express the intermediate filament nestin (Lendahl et al., 1990) and
its posttranslational modifications recognized by the antibodies RC1
and RC2 (Malatesta et al., 2003). Radial glia also express nestin as well
as the transcription factor Pax6 (Gotz and Barde, 2005; Heins et al.,
2002). Unlike neuroepithelial cells and radial glia, basal progenitors
express the T box transcription factor Eomes, also known as Tbr2
(Englund et al., 2005). Expression of these progenitor-associated
genes persists in proliferative neural precursors in the adult brain
(Hodge et al., 2008). Previous studies have highlighted the conversion
of ESCs into radial glia (Liour and Yu, 2003; Liour et al., 2006; Bibel et
al., 2004; Bouhon et al., 2006), but have not addressed the production
of basal progenitors. Our transcriptional profiles indicated that
expression of both Pax6 and Tbr2 was significantly up regulated in
cells induced with SFD medium alone, although Pax6 (but not Tbr2)
was expressed at lower levels in RA-treated cells as well as
undifferentiated ESCs.

To visualize the distribution of these progenitor cell markers we
performed double immunofluorescence on ESCs induced in SFD
medium without or with exposure to RA (Fig. 6). After 12 d in
suspension, many cells induced in SFD medium alone expressed only
Pax6 (45±5%) or only Tbr2 (13±3%), although a small proportion of
cells was found to be immunoreactive for both Pax6 and Tbr2 (10±
2%) (n=7; Fig. 6A). Approximately 36±3% of cells induced with
exposure to RA expressed Pax6, but Tbr2 was not detected in RA
treated cells (n=5; Fig. 6B). At 3 h after plating, cells expressing both
nestin and RC2 were observed in cultures induced with RA or without



Fig. 5. Cell proliferation. ESC aggregates maintained for 12 d in SFD medium alone (A–D) or with exposure to RA from d4–d8 in suspension (E–H) were incubated with BrdU
(20 μg ml−1) for 2 h (A, E); 4 h (B, F); 8 h (C, G) or 24 h (D, H). (I) Percent of Hoechst stained nuclei (blue) in 12 d aggregate cultures that were immunopositive for BrdU (red)
plotted as a function of BrdU exposure time. Incorporation of BrdU in dissociated cells 4 d after plating from aggregates maintained 12 d in SFD medium alone (J) or with RA
exposure from d4–d8 (K). (L) Percent of immunopositive cells following 2 h incubation with BrdU evaluated in different cultures 1–4 d after plating. Scale bars: 25 μm. Cells
exposed to RA displayed lower BrdU labelling both in floating aggregates and in plated cultures, indicating a lower rate of proliferation.
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RA (Figs. 6C, D). Pax6 also was expressed in cells induced with RA or
without RA, and many of the Pax6-positive cells coexpressed
vimentin or RC2 (Figs. 6E–H). Tbr2 immunofluorescence was
observed only by cells induced in SFD medium without RA, and
some of the Tbr2-positive cells were immunoreactive for vimentin or
RC2 (Supplementary Figs. 5A, B). Furthermore, the neural precursor
population displaying strong vimentin immuno-fluorescence was
distinct from neurons labelled with antibodies to β-3-tubulin
(Supplementary Fig. 5C). Together, these data suggest that exposure
to RA alters the specification of neural precursors, blocking the
production of basal progenitors.

Neuronal phenotype specification

Previous work suggests that exposure to RA can promote
caudalization and suppress rostral neural structures (Maden, 2007;



Fig. 6. Neural progenitors. ESC aggregates maintained for 12 d in SFD medium alone (A) contained cells immunopositive for Pax6 (red), a marker expressed in radial glia, or for Tbr2
(green), which is expressed in basal progenitor cells. In contrast, RA-treated aggregates lacked Tbr2-positive cells (B). Scale bar: 50 μm. (C–H) After dissociation, plating, and 3 h in
culture, numerous cells induced without (C, E, G) or with (D, F, H) exposure to RAwere co-labelled with antibodies to RC2 and nestin (C, D), or with Pax6 and RC2 (E, F) or vimentin
(G, H), suggesting that the majority of Pax6-positive cells are likely to be radial glia. Scale bar: 25 μm.
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Wichterle et al., 2002; Bouhon et al., 2006). To infer the positional
identity of differentiated ESC, we compared our upregulated gene lists
with a spatial database of gene expression from the mouse genome
informatics (MGI) website, which contains comprehensive informa-
tion about expression patterns (Smith et al., 2007). As illustrated in
Fig. 7, genes expressed in telencephalon, diencephalon and mesence-
phalon were more prevalent in cells differentiated in SFD medium
alone relative to cultures treated with RA (Fig. 7A), whereas genes



Fig. 7. Positional identity. (A) Replicate microarray heat plots for the 50 genes with differential anatomical expression patterns that showed the highest fold enrichment (lower
bound) in cells differentiated in SFD medium alone relative to differentiation with exposure to RA, and (B) the 50 genes with differential anatomical expression that were most
enriched in RA-treated cells relative to cells induced with SFD medium alone. Genes expressed in telencephalon (T, blue), diencephalon (D, green), mesencephalon (M, yellow),
rhombencephalon (R, orange), and spinal cord (S, rose) in the mouse genome informatics anatomical expression database are indicated. Bar plots illustrate a weighted index of gene
expression for each anterior–posterior (AP) anatomical domain. The AP index distributions were significantly different for genes enriched in the two differentiated cell populations
(Chi-square, pb0.0001). T, D andM geneswere enriched in cells induced with SFDmedium alone, whereas R and S genes were enriched in cells differentiated with exposure to RA (z-
test comparison of proportions, p≤0.023). Genes specifically enriched in neurons (N, green), astrocytes (A, yellow), or oligodendrocytes (O, red) are highlighted. Plots show a
weighted index of cell type-specific expression for all of the genes in each population, which were significantly different in (A) and (B) (Chi-square, p=0.0007). Genes expressed in
astrocytes were enriched in cells differentiated with SFD medium alone (z-test comparison of proportions, pb0.001).
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expressed in rhombencephalon and spinal cord predominated in cells
differentiated with RA exposure (Fig. 7B). Interestingly, genes
involved with regulating transcription were among the transcripts
most highly enriched in each cell population (Figs. 7A, B).

To gain further insight into the positional identity of ESCs
induced with RA or without RA we used antibodies to transcription
factors associated with the differentiation of specific neuronal
populations. In cultures induced with SFD medium for 10–12 d
followed by 4 d adherent culture, 35±3% of cells coexpressed β-3-
tubulin and Tbr1 (Fig. 8A), a transcription factor expressed in the
dorsal telencephalon (pallium) (Hevner et al., 2001; Remedios et al.,
2007) and restricted to glutamatergic neurons (Hevner et al., 2001).
Accordingly, nearly all cells that strongly expressed the vesicular
glutamate transporter1 (VGLUT1), were positive for Tbr1 (Fig. 8B)
whereas GABAergic neurons, expressing glutamic acid decarboxylase
(GAD), were uniformly negative for Tbr1 (Fig. 8C). Instead, many of
the GAD-positive neurons expressed Islet1 (Fig. 8C), which is a LIM
homeodomain transcription factor expressed in the spinal cord and
ventral regions of the telencephalon, diencephalon, mesencephalon,
and rhombencephalon (Ericson et al., 1995; Pfaff et al., 1996). Islet1-
positive cells become motorneurons in mesencephalon, rhomben-
cephalon and spinal cord (Pfaff et al., 1996; Simon et al., 1994) but
not in telencephalon and diencephalon (Ericson et al., 1995). In
cultures induced with SFD medium alone, 30±3% of β-3-tubulin-
positive cells expressed Islet1 and over 80% of cells immunopositive
for Islet1 and β-3-tubulin also expressed GAD (Fig. 8C), which is
prevalent in the subpallium/ventral telencephalon (Muzio et al.,
2002; Yun et al., 2001). Diencephalic Islet1-positive neurons can be
distinguished from telencephalic Islet1-positive neurons by their
expression of LIM homeodomain transcription factor, Lim1 (Ericson
et al., 1995; Fotaki et al., 2006). In the cultures differentiated with
SFD medium alone, approximately 20% of cells were immunoposi-
tive for Lim1/2; however, none of the Islet1-positive neurons was
co-labelled for Lim1 (Supplementary Fig. 6). These data suggest that
Islet1-positive neurons in cultures differentiated with SFD medium
alone acquire ventral telencephalic identity in the absence of RA. A



Fig. 8. Neuronal phenotype specification. (A–C) In plated cultures differentiated with SFD medium alone, distinct β-3-tubulin-positive (blue) neuron populations were immuno-
labelled with the dorsal pallial marker Tbr1 (Ar, arrows, red) or with the subpallial marker Islet1 (Ag, arrowheads, green). Scale bar: 50 μm. (B) Cells strongly immunopositive for the
glutamatergic marker VGLUT1 (green) were co-labelled with Tbr1 (red), (C) whereas GAD-positive GABAergic cells (blue) co-labelled with Islet1 (green), but not Tbr1 (red). Scale
bar: 25 μm. (D–F) In plated cultures differentiated with brief exposure to RA, ∼22% β-3-tubulin-positive neurons (blue) co-labelled with Evx1/2 (red) and Lim1/2 (green) (Dr and
Dg, arrows), markers for V0 ventral spinal neurons, whereas ∼18% co-expressed markers of dI4 and dI6 dorsal spinal neurons Pax2 (red) and Lim1/2 (green) (Er and Eg, arrows). (F)
Most Pax2-positive (blue) neurons were co-labelled for GAD (red) as well as Lim1/2 (green). Scale bar: 25 μm. (G) Quantitation of immunopositive cells differentiated with SFD
medium alone (open bars), or with exposure to RA (solid bars); 21–35 fields each condition, 462±13 cells/field. The dorsal pallial marker Tbr1 and subpallial marker Islet1 together
account for ∼65% of all β-3-tubulin-positive neurons in SFD alone cultures. In cultures prepared from RA-treated aggregates, ∼40% of β-3-tubulin-positive neurons co-labelled with
Pax2 and Lim1/2 typical of dI4/dI6 neurons, or with Evx1/2 and Lim1/2 characteristic of V0 neurons.
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few cells in cultures induced with SFD medium alone expressed
Pax2 (3±0.5%) or Engrail1 (1±0.4%) which are typical markers for
midbrain (Davis and Joyner, 1988; Matsunaga et al., 2000), whereas
no cells were found to be positive for Hoxb4, a marker for the
caudal hindbrain and spinal cord (Graham et al., 1988; Nordstrom et
al., 2006) (Supplementary Fig. 7).

In contrast to differentiation with SFD medium alone, which led
cells to adopt anterior phenotypes, in cultures induced with exposure
to RA, almost 90% of β-3-tubulin positive cells were immunopositive
for Hoxb4 (Supplementary Fig. 7), consistent with acquisition of
caudal positional identity for the hindbrain or spinal cord (Gould et al.,
1997; Nordstrom et al., 2006). To investigate subtype identity of
neurons produced following exposure to RA, we used antibodies to
transcription factors with regionally restricted expression patterns
along the dorsoventral axis of the spinal cord (Briscoe et al., 2000;
Helms and Johnson, 2003). Evx1/2 is expressed in specific dorsal (dI1)



468 M. Kim et al. / Developmental Biology 328 (2009) 456–471
and ventral (V0) interneuron populations (Briscoe et al., 2000; Pierani
et al., 1999) that can be distinguished by co-expression of Lim1/2 in
ventral Evx1/2-positive cells (Pierani et al., 1999), whereas interven-
ing dorsal interneuron populations (dI4, dI5) co-express Pax2 and
Lim1/2 (Gross et al., 2002). Among β-3-tubulin positive cells induced
in SFD mediumwith exposure to RA, 22±0.8% were positive for both
Evx1/2 and Lim1/2 (Fig. 8D arrows), suggesting that they acquired V0
fate; 18±1.2% expressed both Pax2 and Lim1/2, but not Evx1/2 (Fig.
8E arrows), suggesting that they are dI4 or dI6 neurons. In the
developing spinal cord, dorsal Pax2-positive neurons are GABAergic
(Cheng et al., 2004). Most Pax2-positive, Lim1/2-positive neurons
derived from ESCs with exposure to RA expressed the GABAergic
neuronal marker, GAD (Fig. 8F arrows). A few β-3-tubulin-positive
cells (∼10%) were immunopositive for transcription factors that are
expressed by dorsal interneuron subtype dI1 (Evx1) (Pierani et al.,
1999) or dI2 (Brn3a and Lim1/2) (Muller et al., 2002), or ventral
interneuron subtype V1 (En1) (Ericson et al., 1997; Matise and Joyner,
1997), V3 (Nkx2.2) (Briscoe et al., 1999), or motorneurons (Islet1)
(Pfaff et al., 1996) (Fig. 8G). Together, these data suggest that a large
proportion of neurons (∼60–70%) induced with SFD medium alone
acquire anterior neuronal identity, whereas neurons induced with
exposure to RA express molecular markers with regionally restricted
expression patterns in the spinal cord (Supplementary Fig. 8).

Discussion

We have demonstrated efficient neural conversion of mouse ESCs
using serum- and retinoid-free differentiation (SFD) medium that
contains few exogenous proteins and have used this system to
compare the molecular and phenotypic properties of cells induced
to differentiate with or without exposure to RA. Treatment with RA
promotes neural maturation and alters the proportion of neurons
expressing specific phenotypic properties, such as GABA production
or glycine receptor subunit expression. Our microarray analysis
identified a large number of neural genes that are expressed by cells
that differentiate from mouse ESCs whether or not they are treated
with RA. In addition, our results showed that cultures induced with
SFD medium alone are selectively enriched in genes involved in
early neurogenesis, whereas cultures induced with RA are enriched
for genes associated with mature neurons. Together with our BrdU
labelling studies, these results demonstrate that SFD medium
permits the differentiation of neurons but also supports the
continued proliferation of neural precursors, whereas exposure to
RA restricts precursor proliferation and promotes maturation. Our
results further suggest that cells induced with SFD medium alone
acquire anterior neural identity whereas cultures induced in SFD
medium with brief exposure to RA adopt posterior neural identity.

RA and neural differentiation

In serum-containing cultures, RA is essential to induce efficient
neural differentiation from ESCs (Bain et al., 1995, 1996; Glaser and
Brüstle, 2005; Rohwedel et al., 1999). Previous studies suggest that
neural differentiation can proceed without RA under serum-free
conditions (Okabe et al., 1996; Wiles and Johansson, 1999; Finley et
al., 1999; Tropepe et al., 2001; Ying et al., 2003; Watanabe et al.,
2005; Bouhon et al., 2005), although the use of proprietary media
and supplements makes it difficult to rule out a cryptic retinoid
inducer in many studies. Importantly, recent work suggests that
ESCs cultured in PBS alone for 4 h attain neural identity as indicated
by expression of Sox1 and nestin (Smukler et al., 2006). However,
ESCs induced in PBS without any exogenous factors underwent
massive cell death. We have demonstrated that our SFD medium
devoid of exogenous proteins, aside from insulin, transferrin and
BSA, supports neural conversion of ESCs without compromising cell
growth and survival.
Consistently, our experiments indicate that cells differentiated
with brief exposure to RA lose stem cell identity, adopt neural fate, and
acquire mature axonal/dendritic polarity more rapidly than cells
induced with SFD medium alone. Previous work suggests that RA
promotes neural differentiation by inducing proneural genes, such as
Sox1, Sox6, Brn2 and neurogenin1, and suppressing antineural genes
(Maden, 2007). For example, a major component of ESC neuralization
by RA is thought to involve the induction of Wnt signalling inhibitors,
secreted frizzled-related protein 2 (Sfrp2) and dickkopf homolog 1
(Dkk1) (Aubert et al., 2002; Verani et al., 2007;Watanabe et al., 2005).
Our gene expression profiles indicate that Sfrp2 is up regulated in cells
induced in SFD medium with or without exposure to RA. In addition,
Sox6, Brn2 and neurogenin2 are all upregulated in cells differentiated
in SFD medium regardless of exposure to RA and the inhibitor of Wnt
and FGF signalling pathways Tmem46, also known as Shisa2
(Furushima et al., 2007), is selectively enriched in cultures differ-
entiated in SFD medium without RA.

The relative maturity of ESCs differentiated with exposure to RA
may reflect the conversion of neural progenitor cells to postmitotic
neurons. Thus, neurons induced with exposure to RA undergo their
final mitosis at an earlier time point than cells induced with SFD
medium alone. We also observe, however, that although neurons
induced with SFD medium alone are less mature than those
differentiated with RA during the first few days in adherent culture,
they gradually become mature in longer-term culture, suggesting
that they will eventually “catch up” with the level of maturity
attained by RA treated cells. Another possibility, which we cannot
exclude, is that RA directly induces genes associated with neuronal
maturation or with the mature state. During neurogenesis, after
exiting the cell cycle, young neurons initiate formation and
outgrowth of neurites that ultimately become axons and dendrites.
Studies in cell culture, have shown that treatment with RA increases
neurite outgrowth from a variety of central and peripheral neurons
(Clagett-Dame et al., 2006). Therefore, it is possible that exposure to
RA speeds the acquisition of polarity as a secondary effect to the
promotion of neurite formation.

Proliferation vs differentiation

Mouse ESCs divide rapidly and without apparent limit in vitro
(Suda et al., 1987), but division rate decreases under conditions
promoting differentiation (Stead et al., 2002). Cell proliferation and
differentiation are tightly coordinated by cell cycle controls involving
the formation of complexes between cyclins and cyclin-dependent
kinases (CDKs), a process inhibited by cyclin-dependant kinase
inhibitors (CKIs) (Burdon et al., 2002). RA promotes differentiation
and inhibits cell proliferation by inducing cell cycle arrest in a variety
of different embryonic cells including ESCs (Lin et al., 2005). Within
72 h of RA treatment, mouse ESCs express the tumor suppressor gene
p53, reducing expression of Nanog, one of the genes required for
maintenance of pluripotency, and increase expression of p21, the CKI
gene that enhances ESC differentiation (Lin et al., 2005). Our cultures,
whether induced with or without exposure to RA, showed reduced
expression of cyclin E1 that is highly active in undifferentiated ESCs
(Stead et al., 2002) and showed increased expression of cyclin-
dependent kinase inhibitors 1B (p27) and 2D (p19), which indepen-
dently inhibit cell cycle progression in the CNS. Cultures induced with
SFD alone showed increased expression of cyclin D2 and Cdk4, which
together form a complex that is found in neural precursors and is
increased upon initiation of ESC differentiation (Savatier et al., 1996).
Our results show that cultures induced with or without RA include
postmitotic neurons and proliferating cells; however, cultures induced
with SFD alone exhibit more proliferation. Thus, RA mediated
suppression of cyclin genes and induction of CKI genes are likely to
be one mechanism by which RA accelerates cell cycle exit and
promotes ESC neural differentiation.
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Positional and phenotypic identity

Nieuwkoop proposed that neurons are initially specified as
forebrain but can become gradually posteriorized by caudalizing
signals (Nieuwkoop, 1952). Our data suggests that a large proportion
of ESCs induced in SFD medium alone exhibits forebrain identity, but
that brief exposure to RA results in acquisition of features character-
istic of hindbrain and spinal cord, consistent with the Nieuwkoop
model. Another recent study (Gaspard et al., 2008) supports the
proposal that serum-free ESC differentiation yields predominantly
telencephalic identity (see also Bouhon et al. (2006)), with ventral
GABAergic differentiation being dependent on autocrine sonic hedge-
hog signalling (Gaspard et al., 2008). In contrast, other serum-free
conditions involving proprietary media were reported to result in a
high percentage of ESC-derived neurons adopting midbrain identity
(Kawasaki et al., 2000), with efficiency of telencephalic differentiation
being enhanced by exogenous addition of the Wnt antagonist Dkk1
(Watanabe et al., 2005), suggesting that the baseline conditions may
include unknown caudalizing factors that must be suppressed or
overcome for acquisition of more anterior neural phenotypes.

RA suppresses expression of anterior genes and causes caudaliza-
tion of neural tissues in vivo (Maden, 2007). Consistent with this, our
results show that genes highly expressed in hindbrain and spinal cord,
including 14 members of the Hox gene family (Nolte and Krumlauf,
2007), are enriched in cultures induced with exposure to RA, whereas
genes prevalent in more anterior structures were lacking. For
example, Tbr2, which is highly expressed in basal progenitors of
dorsal forebrain (Englund et al., 2005), was dramatically enriched in
cells differentiated in SFD medium alone relative to cells that were
exposed to RA, whereas both differentiated cell populations express
molecular markers for neuroepithelial and radial glial cells that
generate neurons both in the cortex and in spinal cord (Malatesta et
al., 2003). Moreover, a substantial proportion of cells induced with
exposure to RA exhibited transcription factor expression patterns that
were consistent with spinal cord identity. Dorso-ventral patterning in
spinal cord depends on RA and gradients of sonic hedgehog, which
specifies ventral phenotypes, and of bone morphogenetic protein
(BMP) family members, originating from the roof plate, that promote
dorsal phenotypes (Jessell, 2000). Importantly, about 40% of mES cells
induced with exposure to RA expressed transcription factors char-
acteristic of V0 or of dI6 cell populations that lie adjacent to each other
midway between the dorsal and ventral extremes in vivo (Supple-
mentary Fig. 8). Approximately ∼22% co-expressed Evx1 and Lim1/2
(V0), whereas 18% expressed Pax2 and Lim1/2 together with GAD
(dI4 and dI6), suggesting that specification of caudal neuronal
subtypes by RA parallels that observed in vivo (see also Wichterle et
al. (2002)). In contrast to this interpretation, Bibel et al. (2004)
suggested that selection of highly proliferating ESCs followed by
aggregation in serum-containing medium and exposure to RA yielded
radial glia that differentiated into cells with physiological and
morphological characteristics of glutamatergic neurons from cerebral
cortex. However, whenwe induced ESCs in serum containing medium
with exposure to RA, although most of the neurons were glutamater-
gic (Finley et al., 1996), many cells expressed the caudal marker Hoxb4
while none expressed the cortical cell marker Tbr1 that is prevalent
with induction in SFD medium in the absence of RA (Supplementary
Fig. 7). Thus, it seems likely that RA caudalizes differentiating ESCs
regardless the presence or absence of serum, or selection for rapidly
dividing cells.

Our study shows that SFD culture medium induces robust neural
conversion of ESCs and efficient specification of anterior neural fate,
and reproduces the in vivo effect of RA on neural differentiation.
Development of methods for reprogramming somatic cells has
opened up the possibility of generating customized patient-specific
stem cells that can be used for tissue repair and cell replacement (Park
et al., 2008). Maximizing the therapeutic potential of stem cells will
require identifying conditions that allow for efficient commitment to
particular cell phenotypes. Previous studies have shown that ESCs can
differentiate into specific neural types by sequential exposure to
extracellular matrix proteins (Goetz et al., 2006) and signalling
molecules (Salero and Hatten, 2007;Wichterle et al., 2002) associated
with their development in vivo. The restricted number of identified
ingredients in SFD medium should aid in efforts to elucidate the
signals necessary for differentiation of additional neural cell types.
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Figure S1 – RA Accelerates Neural Differentiation 
EBs formed in SFD medium without RA were fixed after 2d (A), 4d (B), 6d (C, G), 8d (D, H), 
10d (E, I) or 12d (F, J). One set was maintained in SFD medium alone (A-F), another set 
received RA from d4-d8 in suspension (G-J). Expression of Oct3/4 (red), a marker for 
undifferentiated ES cells, declined over the first 4d. Expression of the neuron-specific β-3-
tubulin (green) increased gradually in SFD medium without RA but more rapidly in cultures 
with RA exposure. Hoechst33342 (blue). Scale bar: 50 µm. (K, L) Immunofluorescence for Sox2 
(red), a transcription factor expressed in ESCs and differentiating neural cells [Li et al., 1998; 
Conti et al., 2005], in cell nuclei 2d after plating in cells differentiated with SFD medium alone 
(K), or with exposure to RA (L). Hoechst33342 (blue). Scale bar: 20 µm. 
 
 
 
 

 

Figure S2 – Neuronal Polarity Established in Mature Cultures Differentiated without RA.  
MAP2 immunofluorescence (A, B, green) and GAP43 immunofluorescence (C, D, red) 12d after 
plating cells dissociated from ESC aggregates maintained in SFD medium for 12d. Scale Bar: 50 
µm (A, C); 25 µm (B, D). 
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Figure S3 – Coexpression of GABA and GAD.  
Co-localization of GAD (red) and GABA (green) in cells differentiated in SFD medium alone 
(A) or with exposure to RA (B). Hoechst33342 (blue). Scale Bar: 15 µm. 
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Figure S4 – Dendrogram of Neural Subtypes and Precursors.  
Hierarchical clustering based on the relative frequency of Gene Ontology term representation in 
data sets derived from stem cells and various differentiated cell populations presented as a 
dendrogram. Fractional numbers indicate the degree of dissimilarity, calculated as 1-Pearson’s 
coefficient of similarity, between two profiles at the depicted branch point. Genes specific to 
cells induced with SFD plus RA exposure (RA, 1) cluster with profiles of mature brain tissues 
(2-5), whereas genes specific to cells induced with SFD medium alone (SFD, 6) are most similar 
to neuroblasts from E14.5 mouse retina (7) and more weakly related to neural stem cell 
populations derived from cultured neurospheres (NSC, 8, 10-12). Genes specific to our 
undifferentiated mouse ESCs (ESC, 14) cluster with a previously defined ESC profile (13).  
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Figure S5 – Vimentin Immunofluorescence in Neural Precursors differentiated in SFD 
medium without RA.  
In cultures 3h after plating, nuclear Tbr2 immunofluorescence (red) in cells immunopositive for 
vimentin (A, green) or RC2 (B, green). Hoechst33342 (blue). (C) Neural precursor cells 
immunofluorescent for vimentin (green) were distinct from β-3-tubulin-positive neurons (red), 
2d in culture. Scale Bars: 25 µm. 
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Figure S6 – Distinct neural populations express Islet1 and Lim1/2.  
Nuclear immuno-fluorescence for Islet1 (red, arrows) and Lim1/2 (green, arrowheads) was 
segregated to different β-3-tubulin-positive (blue) neuron populations in cultures differentiated in 
SFD medium without RA, 4d after plating. Scale Bar: 50 µm. 
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Figure S7 – Differentiation with exposure to RA promotes caudal identity.  
Nuclear Hoxb4 immunofluorescence (red) was absent from cells differentiated in SFD medium 
alone (A), but present in the nuclei of most cells from aggregates that had received RA (B). 
Neurons visualized with anti-β-3-tubulin (green); Hoechst33342 (blue). Scale Bar: 20 µm. (C-E) 
Immuno-fluorescence for Tbr1 (green) and Hoxb4 (red) in sections of aggregates cultured in 
SFD medium alone (C), SFD medium plus treatment with RA d4-d8 (D), or in DMEM plus 20% 
calf serum with exposure to RA d4-d8 (E). Hoechst33342 (blue). Scale Bar: 50 µm. 
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Figure S8 – Schematic Spinal Cord Cross Section.  
Molecular markers that delineate specific dorsal (right) and ventral (left) progenitor domains are 
illustrated. Red boxes identify markers used in this study. 

 
 

SUPPLEMENTARY TABLES 
 
 

Supplementary Table 1  - Serum-free differentiation medium (SFD) (100 ml) 
 Ingredient Volume Source 
1 DMEM 50 ml Gibco 11960 
2 F12 50 ml Gibco 11765 
 Supplement Mix 1 Concentration  
3 Insulin 5 µg / ml Sigma I9278 
4 Transferrin 50 µg / ml Sigma T1147 
5 Na selenite 30 nM Sigma S5261 
6 putrescine 100 µM Sigma P7505 
7 progesterone 20 nM Sigma P8783 
8 hydrocortisone 20 nM Sigma H0888 
9 tri-iodothyronine 30 nM Sigma T6397 
10 Bovine Albumin 10 µg / ml Sigma A6003 

1 The Supplement Mix was prepared as a 100x stock in DMEM. Ingredients 1-7 are components 
of N2 medium [Bottenstein and Sato, 1979]. Hydrocortisone and tri-iodothyronine support the 
survival and differentiation of astrocytes [Bottenstein, 1981; 1985; Morrison and deVellis, 1981; 
1983] and oligodendrocytes [Barres et al., 1994; Jones et al., 2003], respectively.   
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Supplementary Table 2  - Antibodies used for cell phenotype analysis 
Primary Antibodies Dilution Species Source 

Fixation with 4% paraformaldehyde 
anti-Brn3a 1:5000 rabbit E. Turner1 
anti-Engrailed-1 (4G11) 1:50 mouse DSHB2 
anti-Evx1 (99.1-3A2) 1:100 mouse DSHB 
anti-Hoxb4 (I12) 1:100 rat DSHB  
anti-Islet1 (39.4D5) 1:100 mouse DSHB 
anti-Lim1/2 (4F2) 1:100 mouse DSHB 
anti-nestin (RC2) 1:20 mouse DSHB 
anti-Nkx2.2 (74.5A5) 1:100 mouse DSHB 
anti-Nkx6.1 (F55A10) 1:100 mouse DSHB 
anti-Oct3/4 (SC 9081) 1:200 rabbit Santa Cruz 
anti-Pax2 (71-6000) 1:300 rabbit Zymed 
anti-Pax6 (PAX6) 1:200 mouse DSHB 
anti-Tbr1 (AB 9616) 1:3000 rabbit Chemicon 
anti-Tbr2 (AB 9618) 1:2000 rabbit Chemicon 
anti-β-3-tubulin (PRB-435P) 
(MMS-435P) 

1:2000 
1:2000 

rabbit 
mouse 

Covance 

anti-vimentin (40E-C) 1:50 mouse DSHB 
anti-nestin (SCRR-1001) 1:1000 rabbit ATCC 

 
Fixation with 4% paraformaldehyde, 0.1% glutaraldehyde 

anti-GABA (A2052) 1:2000 rabbit Sigma 
anti-GAD (GAD-6) 1:50 mouse DSHB 
anti-GAP43 (AB 5220) 1:1200 rabbit Chemicon 
anti-GFAP (G6171) 1:1000 mouse Sigma 
anti-MAP2 (MAB 3418) 1:300 mouse BM 
anti-vGLUT1 (AB 5905) 1:5000 guinea pig Millipore 
 

Secondary Antibodies Dilution Species Source 
Cy2 or Cy3 anti-mouse IgG 1:400 goat Chemicon 
Cy2 or Cy3 anti-rabbit IgG 1:400 goat Chemicon 
Cy3 anti-rat IgG 1:400 goat Chemicon 
Alexa546 anti-mouse IgG1 or IgG2a 1:500 goat Invitrogen 
Alexa568 anti-guinea pig IgG 1:400 goat Invitrogen 
Alexa647 anti-mouse IgG1 or IgG2b 1:200 goat Invitrogen 
FITC anti-mouse IgM 1:100 goat Sigma 
 
1 Fedtsova and Turner, 1995 
2 Developmental Studies Hybridoma Bank.  
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Supplementary Table 3  - Gene Function Enrichment Analysis: genes enriched  
in cell differentiated with SFD medium alone. 
Genes 
↑ in 
SFD 

Genes  
on 

Chip 

 
P-value 

 
GO Term Name 

9 53 0.000296 anterior/posterior pattern formation 
11 83 0.000533 brain development 
33 451 0.000566 cell differentiation 
16 114 0.000016 chromatin binding 
16 132 0.000090 chromatin modification 

115 1810 <0.000001 DNA binding 
11 60 0.000033 forebrain development 
5 18 0.000795 histone-lysine N-methyltransferase activity 
22 243 0.000319 mRNA processing 
51 791 0.000409 multicellular organismal development 
16 147 0.000297 negative regulation of transcription from RNA polymerase II promoter 
21 203 0.000074 nervous system development 
9 52 0.000258 neuron differentiation 
79 1343 0.000206 nucleic acid binding 

235 4025 <0.000001 nucleus 
20 222 0.000622 positive regulation of transcription from RNA polymerase II promoter 

132 1910 <0.000001 regulation of transcription, DNA-dependent 
106 1414 <0.000001 transcription 
15 138 0.000460 transcription activator activity 
10 72 0.000662 transcription coactivator activity 
57 847 0.000062 transcription factor activity 
30 369 0.000184 transcription factor complex 
22 225 0.000112 transcription regulator activity 
7 32 0.000315 vasculogenesis 
13 112 0.000596 Wnt receptor signaling pathway 

108 2056 0.000913 zinc ion binding 
 
Highlighted GO terms are plotted in Fig. 4A. 
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Supplementary Table 4  - Gene Function Enrichment Analysis: genes enriched  
in both RA-treated and untreated cells 
Genes 
↑ in 
SFD 

Genes  
on 

Chip 

 
P-value 

 
GO Term Name 

12 27 0.000367 ATP biosynthetic process 
33 63 <0.000001 axon 
25 71 0.000019 axon guidance 
23 60 0.000011 cell soma 
11 24 0.000493 cholesterol biosynthetic process 
13 33 0.000651 coated pit 

539 3226 <0.000001 cytoplasm 
38 157 0.000477 cytoplasmic vesicle 
82 424 0.000748 cytoskeleton 

139 718 0.000013 endoplasmic reticulum 
80 385 0.000106 endoplasmic reticulum membrane 
12 28 0.000503 ER to Golgi vesicle-mediated transport 

137 577 <0.000001 Golgi apparatus 
64 262 0.000005 Golgi membrane 
13 27 0.000099 growth cone 
80 354 0.000007 GTP binding 
38 161 0.000751 GTPase activity 
29 104 0.000245 homophilic cell adhesion 
55 229 0.000038 intracellular protein transport 
26 92 0.000410 lipid biosynthetic process 

794 5038 <0.000001 membrane 
56 207 0.000001 microtubule 
22 72 0.000402 microtubule associated complex 
18 51 0.000253 microtubule binding 
26 75 0.000017 microtubule-based process 
66 301 0.000097 mitochondrial inner membrane 
24 42 <0.000001 NADH dehydrogenase (ubiquinone) activity 
24 39 <0.000001 NADH dehydrogenase activity 
23 79 0.000578 negative regulation of cell cycle 
51 203 0.000023 nervous system development 
23 65 0.000037 neuron migration 
21 58 0.000057 post-translational protein modification 

781 4889 <0.000001 protein binding 
101 479 0.000008 protein transport 
21 61 0.000114 regulation of protein metabolic process 
21 58 0.000057 small conjugating protein ligase activity 
59 229 0.000003 small GTPase mediated signal transduction 
11 24 0.000493 sterol biosynthetic process 
48 208 0.000275 synapse 
29 104 0.000245 transcription factor binding 
98 442 0.000001 ubiquitin cycle 
33 124 0.000221 ubiquitin-protein ligase activity 
54 165 <0.000001 vesicle-mediated transport 
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Supplementary Table 5  - Gene Function Enrichment Analysis: genes enriched  
in cells differentiated with exposure to RA. 
Genes 
↑ in 
SFD 

Genes  
on 

Chip 

 
P-value 

 
GO Term Name 

10 27 0.000076 ATP biosynthetic process 
12 35 0.000032 ATP synthesis coupled proton transport 
21 105 0.000142 calcium ion transport 
43 311 0.000408 cell junction 
8 25 0.000996 cytochrome-c oxidase activity 
11 36 0.000181 cytoskeletal protein binding 
28 155 0.000070 endosome 

108 577 <0.000001 Golgi apparatus 
46 262 0.000001 Golgi membrane 
16 50 0.000004 hydrogen ion transmembrane transporter activity 
14 41 0.000008 hydrogen ion transporting ATP synthase activity, rotational mechanism 
14 41 0.000008 hydrogen ion transporting ATPase activity, rotational mechanism 
8 25 0.000996 hydrogen-exporting ATPase activity, phosphorylative mechanism 

390 4074 0.000009 integral to membrane 
33 229 0.000940 intracellular protein transport 
61 500 0.000729 ion transport 
25 138 0.000159 manganese ion binding 

511 5038 <0.000001 membrane 
5 8 0.000494 metalloendopeptidase inhibitor activity 

107 909 0.000036 mitochondrion 
9 20 0.000040 neurotransmitter secretion 
17 69 0.000054 pattern specification process 
5 7 0.000270 peptidyl-threonine phosphorylation 
22 109 0.000088 postsynaptic membrane 
7 17 0.000481 presynaptic membrane 
68 479 0.000004 protein transport 
19 59 <0.000001 proton transport 
8 11 0.000004 proton-transporting ATP synthase complex, coupling factor F(o) 
13 45 0.000085 proton-transporting two-sector ATPase complex 
33 229 0.000940 small GTPase mediated signal transduction 
45 208 <0.000001 synapse 
6 10 0.000170 synaptic vesicle  
14 55 0.000170 synaptosome 

178 1641 0.000011 transport 
10 26 0.000056 tricarboxylic acid cycle 
33 165 0.000002 vesicle-mediated transport 
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Figure 4B Dendrogram Numerical Index: 
 
1  RA 
 
2  RA vs SFD  
 
3  hippocampus       Affymetrix MOE430v2 
     GEO: GSM92512, GSM92513 and GSM92514 vs  

                                                        NSCs GSM272847 and GSM272848 
 
4  RA vs ES 
 
5  SFD vs ES 
 
6  cerebellum   Affymetrix MOE430v2   
     GEO: GSM205978 and GSM205979 vs  

                                                        NSCs GSM272847 and GSM272848 
 
7  zymogenic cells  Affymetrix MOE430v2  [Ramsey et al., 2007]  
  (aka chief cells)  GEO: GSE5018(GSM113347) 
 
8  lateral ventricle brain (LVBr)  Affymetrix mgU74 [Ramalho-Santos et al., 2002]  
  http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 
 
9  zymogenic cells    Affymetrix mu11K [Mills et al., 2003]  
  (aka chief cells)      
 
10  retina     Affymetrix mgU74  [Fortunel et al., 2003] 
  http://giscompute.gis.a-star.edu.sg/suppdata_stemness/ 
 
11 small intestine    Affymetrix mu11K  [Hooper et al., 2001] 
 available upon request of L.V. Hooper 
 
12  surface mucous cells (SMC) Affymetrix MOE430v2 [Ramsey et al., 2007]  
  (aka stomach pit cells) GEO: GSM113348 
 
13  skin     Affymetrix mgU74 [Feezor et al., 2004] 
     GEO: GSM7478, GSM7479, GSM7480  
     Raw chip data available upon request of R.J. Feezor 
 
14  hematopoietic stem cells (HSC) Affymetrix mgU74  [Ramalho-Santos et al., 2002] 
 http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 

 
15  hematopoietic stem cell ESTs (HSC-EST)    [Ivanova et al., 2002] 
        Unigene Library 11946 
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16  hematopoetic stem cells (HSC)  Affymetrix mgU74  [Ivanova et al., 2002] 
http://www.cbil.upenn.edu/RAD3/php/displayStudy.php?study_id=270 

 
 
17  neural stem cells (NSC) Affymetrix mgU74 [D'Amour & Gage, 2003] 

available upon request of F.H. Gage 
 
18  neural stem cells (NSC)  Affymetrix mgU74 [Ramalho-Santos et al., 2002] 

http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 
 
19  neural stem cells (NSC)   Affymetrix mgU74  [Ivanova et al., 2002] 
  http://www.cbil.upenn.edu/RAD3/php/displayStudy.php?study_id=270 
 
20  mesenchymal stem cells ESTs (MSC-ESTs)    [Sharov et al., 2003] 
        Unigene Library 10031 
 
21  epidermal stem cells (epidermal SC) Affymetrix mgU74  [Tumbar et al., 2004] 
  http://www.rockefeller.edu/labheads/fuchs/database.php 
 
22 small intestine epithelial precursor (IEP) Affymetrix mu11K  [Stappenbeck et al., 2003]  
 http://gutsc.wustl.edu/supplement 
 
23  gastric epithelial progenitor (GEP) Affymetrix mu11K [Mills et al., 2002] 
  http://gutsc.wustl.edu/supplement 
 
24  SFD 
 
25  colonic epithelial precursors (CEP)        MOE430  [Doherty et al., 2008] 
      GEO: Pending 
 
26  SFD vs RA 
 
27  hepatic progenitor cells (HPC)  Affymetrix MOE430v2 [Ochsner et al., 2007]  
     GEO: GSE6966 
 
28  neuroblast    Affymetrix mgU74 [Fortunel et al., 2003] 
  http://giscompute.gis.a-star.edu.sg/suppdata_stemness/ 
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Figure S4 Dendrogram Numerical Index: 
 
1  RA 
 
2  hippocampus   Affymetrix MOE430v2 
     GEO: GSM92512, GSM92513 and GSM92514 vs  

                                                        NSCs GSM272847 and GSM272848 
 
3  retina     Affymetrix mgU74  [Fortunel et al., 2003] 
  http://giscompute.gis.a-star.edu.sg/suppdata_stemness/ 
 
 
4  lateral ventricles brain (LVBr)  Affymetrix mgU74 [Ramalho-Santos et al., 2002]  
  http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 
 
5  cerebellum   Affymetrix MOE430v2   
     GEO: GSM205978 and GSM205979 vs  

                                                        NSCs GSM272847 and GSM272848 
 
6  SFD 
 
7  neuroblast    Affymetrix mgU74 [Fortunel et al., 2003] 
  http://giscompute.gis.a-star.edu.sg/suppdata_stemness/ 
 
8  neural stem cells (NSC)   Affymetrix mgU74 [D'Amour & Gage, 2003] 

available upon request of F.H. Gage 
 
9  neural crest   Affymetrix mgU74  [Williams et al., 2007] 
  (non-differentiating media 48 hr) GEO: GSE1588 (GSM27271-4) vs LVBr 
 
10  neural stem cells (NSC)   Affymetrix mgU74  [Ivanova et al., 2002] 
  http://www.cbil.upenn.edu/RAD3/php/displayStudy.php?study_id=270 
 
11  neural stem cells (NSC)   Affymetrix mgU74  
     GEO: GSE587 (GSM8900 and GSM8904) vs LVBr   
 
12  neural stem cells (NSC)   Affymetrix mgU74 [Ramalho-Santos et al., 2002] 

http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 
 
13  embryonic stem cells (ESC)   Affymetrix mgU74  [Ramalho-Santos et al., 2002] 
  http://www.ebi.ac.uk/arrayexpress/       Accession: E-MEXP-1158 
 
14  ESC 
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